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Abstract 

Consistent goodness-of-fit tests for the family of asymmetric Laplace 
distributions are constructed. The tests are based on a weighted integral 
incorporating the empirical characteristic function of the data suitably 
standardized via the maximum likelihood estimators. Finite-sample comparison 
with classical procedures is provided, as well as applications with financial data. 

1. Introduction 

The purpose of this paper is to provide goodness-of-fit tests for a 
generalization of the classical Laplace distribution, the so-called 
asymmetric Laplace distribution (ALD). Recall that the density function 
of the Laplace distribution (also known as the first law of Laplace) is 
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where ∞<δ<−∞  and .0>σ  

The ALD results from this density function by introducing to the 
already existing location and scale parameters δ  and ,σ  respectively, an 
extra (shape) parameter k. Then, the density of the ALD becomes 
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where .0>k  In fact there are various forms of skewed Laplace 
distributions but here we will follow the definition of Kotz et al. [8], and 
write ( )kAL ,, σδ  for the three- parameter family with density given by 

Equation (1.2). Note that k  regulates the shape of the underlying 
distribution. In particular, setting 1=k  in (1.2) yields the classical 
Laplace distribution with density function given by (1.1), which is the 
only symmetric member of the ALD class. On the other hand if ,1≠k  the 
corresponding distribution is asymmetric with excess kurtosis. 

Suppose that on the basis of independent copies ,,,, 21 nXXX …  of a 

random variable X, we wish to test the null hypothesis 

:0H  The law of X is ( )kAL ,, σδ  for some 0, >σ∈δ R  and .0>k  

Motivation for considering the ALD stems from the fact that this 
distribution has tails heavier than the normal distribution, and by 
incorporating extra skewness, becomes an excellent choice of model for 
applications in Economics, and particularly for modeling financial data. 
See for instance, Kotz et al. [8], Kozubowski and Podgórski [10], and 
references therein. 

The rest of the paper is organized as follows. Section 2 presents the 
new test statistic, while Section 3 is devoted to estimation of parameters. 
In Section 4 the consistency of the test is proved under certain conditions 
on the behavior of the estimators under alternative distributions. In 
Section 4 Monte Carlo simulations are presented examining the power of 
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the new tests in comparison to more classical procedures. Finally in 
Section 5 applications in real financial data are provided. 

2. Test Statistics 

If ( ),,,~ kALX σδ  then the characteristic function ( ) ( ) =φ t,CF  

( )itXeE  of X, is given by 
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and satisfies 

( ) ,,0; R∈=ϑ ttD  (2.2) 

where 

( ) ( ) ( ) ( )tittittD δ−φϑ−σ+=ϑ exp1; 22  

with ( ) .1 kk −=ϑ  In view of (2.2), it is natural to construct a test 
statistic based on a measure of deviation from zero of the function 

( ) ( ) ( ) ,1ˆ1ˆ; 2 −φϑ−+=ϑ ttittD nnnn  

where ( ) ,ˆˆ1ˆ nnn kk −=ϑ  
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is the empirical CF of the standardized data ( ) ,1,ˆˆ =σδ−= jXY nnjj  

,,,2 n…  and ( )nnn k̂,ˆ,ˆ σδ  denote the maximum likelihood estimator of 
( ).,, kσδ  Specifically we suggest to reject the null hypothesis 0H  for 
large values of 

( ) ( ) ,ˆ;ˆ 2
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with ( )tw  denoting a non-negative weight function. From (2.3) we have 

by straightforward algebra 
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where 

( )( ) ( ) ( ) ,4,2,0,cos == ∫
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( ) ( ) ( ) .sin dttwbttbIs ∫
∞+
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Although theoretical properties of the test statistic remain qualitatively 
invariant, provided that ( )tw  satisfies some general conditions, 

particular appeal lies with weight functions that render the test statistic 
in a closed formula suitable for computer implementation. For instance if 

one chooses the function ( ) ,0, >= − aetw ta  all integrals figuring in (2.4) 

can  easily be computed. In particular, we have 
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In closing this section we note that the empirical CF has recently proved 
to be a powerful tool for statistical inference. In goodness-of-fit problems 
particularly, methods based on the empirical CF are not only convenient 
but also very competitive to more classical procedures such as those 
based on the empirical distribution function. The reader is referred to 
Koutrouvelis and Meintanis [9], Gürtler and Henze [4], Meintanis [12, 
13], Klar and Meintanis [6], and Epps [2], to name just a few of the more 
recent works. A large part of the earlier literature on the empirical CF 
may be found in Ushakov [14]. 

3. Estimation of Parameters 

As noted in the previous section, the new test statistic incorporates 
the maximum likelihood ( )ML  estimators of the parameters <δ<−∞  

,0, >σ∞  and .0>k  These estimators were proposed and fully studied 
by Kotz et al. [7]. The computational part is presented here for 
completeness. For further theoretical properties of the ML estimators of 
the ALD the reader is referred to Kotz et al. [7]. Let ,,,, 21 nxxx …  

denote particular realizations of ,,,, 21 nXXX …  and write ( ) ( )21 xx ≤  

( ),nx≤≤ …  for the corresponding realizations of the order statistics ( )1X  

( ) ( ).2 nXX ≤≤≤ …  Then from (1.2), it follows that the average (divided 

by n) log-likelihood function is given by 
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To obtain the ML estimators we follow the steps below: 
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Step 1 

For ,,,2,1, njx j …==δ  compute 

( ) ( ) ( )













δ−+δ−=δ −

=

+

=
∑∑ j

n

j
j

n

j
xnxnH

11

11ln2  

Step 2 

Set ( ),ˆ rn x=δ  where ( )rx  is such that: ( ( ) ) ( ( ) )jr xHxH ≤  for all 

.,,2,1 nj …=  

Step 3 

Case I: If 1=r  or ⇒= nr  the ML estimators do not exist. 

Case II: If ,1 nr <<  then set ( ),ˆˆ nn δσ=σ  and ( ),ˆˆ
nn kk δ=  where 
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Note, that this algorithm is a modification of the algorithm proposed by 
Kotz et al. [7]. We notice in particular, that proper modification of the 
function ( )δH  provides more accurate and efficient estimators. 

4. Consistency of the Test 

Under certain assumptions, the test statistic figuring in (2.3) is 
consistent against general alternatives to the asymmetric Laplace law. To 
see this assume that under the (otherwise arbitrary) law for the random 

variable X, we have that ( ) ( )kknnn
~,~,~ˆ,ˆ,ˆ σδ→σδ  holds almost surely as 
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,∞→n  for some ,~ R∈δ  and .0~,~ >σ k  Also denote by ( )tϕ~  the CF of the 

random variable ( ) .~~ σδ−X  Then the uniform strong consistency of the 

empirical CF (refer to Feuerverger and Mureika [3], Csörgő, [1], implies 
that if ,ttn →  then 

( ) ( ) ,0~ →ϕ−φ ttnn  

almost surely, as .∞→n  Hence one has ( ) ( ) ( )ttittD nn ϕϑ−+→ϑ ~~1ˆ; 2  

( ),~;~:1 ϑ=− tD  where ( ) ,~~1~ kk −=ϑ  and consequently that, 

( ) ( ) .~;~ˆ; 22 ϑ→ϑ tDtD nn  

In turn representation (2.3) implies that 
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by Fatou’s Lemma. Assuming that ( )tw  does not vanish (apart from a set 

of measure zero), we have that w∆  is positive, and consequently that 

,ˆ , ∞→wnT  almost surely, as ,∞→n  unless ( ) .,0~;~ R∈=ϑ ttD  But 

,0~ ≡D  implies that ( )tϕ~  is identically equal to ( ) ( ) .~1 12
0

−ϑ−+=φ titt  

Notice however that ( )t0φ  corresponds to the ALD with ( ) ( ),1,0, =σδ  

and shape parameter equal to ,~k  which implies that the CF of X is given 

by ( )tφ  of Equation (2.1), for some ( ).~,~,~ kσδ  In turn, from the 

uniqueness of the CF it follows that the law of X is ( ),~,~,~ kAL σδ  and the 

proof of consistency is complete. 

5. Simulations 

In this section we present the results of a Monte Carlo study for the 
new test given by (2.4) with weight function ( ) ( ),exp tatw −=  denoted by 

,ˆ ,anT  in comparison to classical tests based on the empirical distribution 
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function. Specifically we compare anT ,ˆ  with the Kolmogorov-Smirnov 

(KS), the Cramér-von Mises (CM), and the Anderson- Darling (AD), tests, 
which are computed as follows: Denote by ( )kóxF ,,; δ  the cumulative 

distribution function of the ALD corresponding to the density (1.2), and 

let ( ) ( ).ˆ,,ˆ;ˆ nnn kxFxF óδ=  Then the KS statistic is given by 

( ),,maxKS −+= KSKSn  

where 
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The Monte Carlo study was implemented by drawing 1000 samples of 
size n. However, it is well known that the limit null distribution of the 
test statistics depends on the value of the shape parameter ;ϑ  see for 
instance Meintanis and Swanepoel [11]. Hence, since ϑ  is unknown, we 
resort to a parametric bootstrap procedure in order to obtain the critical 
point αp  of a size α−  test as follows: 

● 1. Conditionally on the observed value of ,,,2,1, njX j …=  

compute the ML estimates ( )nnn k̂,ˆ,ˆ σδ  and, then the observations =jŶ  

( ) .,,2,1,ˆˆ njX nnj …=σδ−  

● 2.a. Calculate the value of the test statistic, say ,T̂  based on 

{ }njjY 1
ˆ

=  and ( ) .ˆˆ1ˆ nnn kk −=ϑ  
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● 2.b.1. Generate a bootstrap sample ,,,2,1, njX j …=∗  from AL  

( ).ˆ,1,0 nk  

● 2.b.2. On the basis of ,,,2,1, njX j …=∗  compute the estimates 

( )∗∗∗ σδ nnn k̂,ˆ,ˆ  and, then the observations ( ) ,1,ˆˆˆ =σδ−= ∗∗∗∗ jXY nnnj  

.,,2 n…  

● 2.b.3. Calculate the value of the test statistic, say ,ˆ ∗T  based on 

{ }njjY 1
ˆ

=
∗  and ( ) .ˆˆ1ˆ ∗∗∗ −=ϑ nnn kk  

● 3. Repeat steps 2.b.1 - 2.b.3., and calculate M values of ,ˆ ∗T  say 

.,,2,1,ˆ MjTj …=∗  

● 4. Obtain αp  as ( ),ˆ MMT α−
∗  where ( ) MjT j ,,2,1,ˆ …=∗  denotes 

the ordered -ˆ ∗jT value.  

In fact, and with ,100=M  we have used the modified critical points 

( ) ( ) ( ( ) −α−+= +α−
∗

α−
∗

α 1ˆ1ˆ~ MMMM TTp  ( ) ),ˆ MMT α−
∗  which leads to a 

more accurate empirical level of the test. 

In addition to the asymmetric Laplace distribution ( ),,1,0 kAL  
simply denoted by ( ),kAL  the following distributions are simulated: 

● The skew normal distribution ( ) ( ( ) ) +λ+λ=λ 1
2121 ZSN  

( ( ) ) ,11 2
212 Zλ+  where 21, ZZ  are independent standard normal 

variates. 

● Tukey’s g-distribution, denoted by ( ),gTU  where ( ) ( 1gZegTU =  
) ,1 g−  with 1Z  is as above. 

● The skew t-distribution of Kim [5], denoted by ( ),, νλST  where 
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with 21, ZZ  as above and 2σ  following a Gamma distribution with shape 

parameter equal to 2ν  and scale parameter equal to ν.2  

These distributions provide alternative ways of modelling skewed 
data. Moreover, they include the normal law as a particular case: The 
skew-normal for 0,=λ  the skew t-distribution, ( ),ν0,ST  as ,∞→ν  and 

Tukey’s g-distribution as .0→g  

The simulation results for 100=n  (resp. 200=n ) are reported in 
Table 1 (resp. Table 2) in the form of percentage of rejection rounded to 

the nearest integer. (For simplicity we write aT̂  in the tables for the new 

test). These percentages suggest that among the classical procedures the 
AD is the most powerful test for the alternatives considered. Comparison 

of powers between the AD and aT̂  tests, favors the former for some 

alternatives while favoring the latter for other alternatives. However it 
may be seen that the CF-based test with, say ,2.2=a  is a strong 
competitor, and in fact outperforms all classical procedures under the 
majority of sampling situations with both sample sizes, though not by a 
wide margin. 

6. Applications 

Our application deals with exchange currency data. The data consist 
of daily currency spot exchange rates for USA and Japan, covering the 
period from January 1, 1975 to December 31, 2005. The data were 
obtained from the official site of the Bank of England at 
www.bankofengland.co.uk. The variable of interest is the ‘relative’ daily 
return ( ) ,11 −−−= tttt rrrR  where tr  denotes the raw return and 1−t  

and t refer to two consecutive days. 

There exist 31 samples, each sample corresponding to one year, with 
sample size ≈  250. It is common knowledge however that there exists 
temporal dependence in financial variables in general, and exchange rate 
returns in particular. Therefore we first estimate an ARMA (1,1) model 
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11110 ˆˆˆˆˆˆ
−− εβ−α+α= ttt RR  and, then apply the test of fit to the ALD on 

the residuals of this ARMA model. 

Our results indicate a good rate of acceptance. Specifically, the rate of 
acceptance at a 5% level of significance in the spot exchange rate for the 
31 different samples is 51:6% (or 16 out of 31 samples). Note that if we 
exclude the last 8 years, i.e., if we only consider the data corresponding to 
the first 23 years (1975-1997), the rate of acceptance is increased to 
69:57%. The cause in this significance difference could be potentially due 
to a structural break in the currency exchange rates caused by the 
introduction of the Euro. Figure 1 provides an additional visual 
verification in the form of histograms and probability-probability ( )PP −  
plots. Namely we have plotted the USD/YEN exchange rate for the 
periods 1985-1987. In the first set of graphs one can see the histograms 
together with the superimposed fitted AL models, while the second set 
consists of the corresponding P-P plots. In these graphs too, the 
agreement between the empirical distribution of the residuals and a 
corresponding ALD is seen to be quite good. 
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Table 1. Percentage of rejection for 1000 Monte Carlo samples of size 
100=n  at 5% (left) 10% (right) level of significance 

 
5.1̂T  75.1̂T  0.2T̂  2.2T̂  KS  CM  AD  

AL(0.75) 4 10  4 8  4 9  4 9  4 8 5 11  4 9 

AL (0.90) 6 10 6 10 5 10 5 10  5 9 5 10 5 11 

AL (1.00) 5 10 5 10  5 9  5 9 5 11 5 10  5 9 

AL (1.10)  5 9  5 9 5 10 5 10 5 11 5 10 5 11 

AL (1.25) 5 10 5 10 5 10  5 9 5 11 5 10 5 10 

SN(0.25) 46 60 55 68 61 74 64 77 43 59 58 71 61 73 

SN (05.0) 45 60 54 69 60 74 62 76 43 59 56 70 59 73 

SN (1.00) 44 60 52 67 59 72 63 74 43 58 55 70 58 72 

SN (1.50) 42 57 50 64 56 70 59 72 41 57 54 68 56 70 

TU(0.05) 46 62 55 70 60 75 65 78 45 60 59 73 62 74 

TU (0.10) 45 61 54 69 60 74 63 77 44 59 57 72 60 73 

TU (0.15) 43 59 52 66 55 70 58 73 43 57 54 69 55 71 

TU (0.20) 39 54 47 62 51 66 53 67 39 54 49 65 52 67 

ST(0.5,2) 25 34 30 41 35 45 38 47 37 46 43 53 51 60 

ST (0.5,4) 14 23 14 24 15 25 15 25 13 23 15 25 16 26 

ST (0.5,6) 23 34 26 38 28 40 28 41 19 32 25 37 25 36 

ST (0.5,8) 28 41 31 45 35 47 37 48 26 39 30 43 31 44 

ST (0.5,10) 33 45 37 51 41 54 44 57 30 44 36 53 37 52 

ST (1.0,2) 23 32 27 38 31 42 33 45 38 47 44 53 51 60 

ST (1.0,4) 13 22 15 23 14 24 14 24 12 22 14 23 16 24 

ST (1.0,6) 22 33 25 37 26 39 26 40 20 31 23 35 24 36 

ST (1.0,8) 25 38 29 44 32 46 34 47 25 37 29 42 30 43 

ST (1.0,10) 29 41 34 46 36 51 39 53 29 42 34 49 36 50 

ST (2.0,2) 19 27 22 32 25 36 27 39 41 51 46 56 51 61 

ST (2.0,4) 11 18 12 19 11 20 11 21 11 20 12 22 13 23 

ST (2.0,6) 18 29 19 31 21 32 20 32 18 28 21 32 23 33 

ST (2.0,8) 21 34 24 37 25 39 26 40 23 35 26 38 26 39 

ST(2.0,10) 26 38 30 43 32 46 32 46 27 37 32 45 33 46 
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Table 2. Percetage of rejection for 1000 Monte Carlo samples of size 
200=n  at 5% (left) 10% (right) level of significance 

 
5.1̂T  75.1̂T  0.2T̂  2.2T̂  KS  CM  AD  

AL(0.75) 6 12 5 12 5 11 5 11 5 10 5 10 4 10 

AL (0.90) 6 11 6 11 6 11 6 11 6 12 6 11 5 12 

AL (1.00) 5 10 5 10 5 10 5 10 5 11  4 9 5 11 

AL (1.10)  5 9  5 9  5 9  5 9 6 10 5 10 6 10 

AL (1.25)  5 9  5 9  5 9  5 9 6 11 6 11 6 11 

SN(0.25) 86 93 92 96 95 97 96 98 76 88 93 97 95 98 

SN (0.50) 86 93 91 96 94 98 95 98 77 87 93 97 95 98 

SN (1.00) 85 92 91 96 93 97 95 98 77 88 92 97 94 97 

SN (1.50) 84 91 90 94 92 96 93 97 75 87 90 96 93 96 

TU(0.05) 87 93 92 97 95 99 96 99 79 89 94 98 95 99 

TU (0.10) 87 93 91 96 94 98 96 98 78 89 93 97 94 98 

TU (0.15) 86 93 91 95 93 97 94 98 75 87 90 95 93 96 

TU (0.20) 84 91 89 94 91 95 92 96 72 84 87 94 91 95 

ST(0.5,2) 42 52 50 61 56 66 61 70 56 67 65 73 73 79 

ST (0.5,4) 29 42 31 44 31 45 30 43 21 34 27 40 28 40 

ST (0.5,6) 51 62 54 67 56 68 57 68 39 54 52 65 52 65 

ST (0.5,8) 61 71 65 76 68 88 70 80 51 64 64 77 66 77 

ST (0.5,10) 66 77 72 82 75 84 77 86 56 70 72 83 74 83 

ST (1.0,2) 41 52 49 60 55 65 59 69 61 69 67 74 74 81 

ST (1.0,4) 28 39 28 42 29 41 28 41 22 32 26 36 28 38 

ST (1.0,6) 49 62 54 65 56 67 56 67 39 54 50 65 51 64 

ST (1.0,8) 60 73 66 78 69 79 70 80 49 65 64 76 66 77 

ST (1.0,10) 66 77 72 83 76 85 78 86 55 71 70 82 74 83 

ST (2.0,2) 39 52 47 58 53 64 58 66 63 73 70 79 77 84 

ST (2.0,4) 25 38 26 39 26 39 25 38 20 31 23 37 26 40 

ST (2.0,6) 45 57 48 60 49 63 49 62 36 48 43 58 46 61 

ST (2.0,8) 54 67 59 72 60 72 60 72 43 57 55 69 58 71 

ST(2.0,10) 61 75 67 78 69 79 69 80 50 65 65 77 68 80 
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Figure 1. Histograms with fitted density and P-P plots for the USD/YEN 
exchange rate for 1985-1987. 
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